Numerieke wiskunde 2, WINM2-08 2011/12 semester II a
 Examination, April 2nd, 2012.

Name Student number

Notes:

- You may use one sheet (single side written) with notes from the lectures.
- During the exam it is NOT permitted to consult books, handouts, other notes.
- Numerical/graphic calculators are permitted, programmable calculators are NOT permited.
- Devices with wireless internet connection and/or document readers are NOT permitted.
- Hint: please describe the solution procedures in full details, not only the results.

TEST (to be returned by 17:00)

1. (Solution of linear systems) A matrix $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|, \quad i=1, \ldots, n .
$$

(a) [pts 6] Show that if A^{T} is strictly diagonally dominant, then A has an LU factorization.
(b) [pts 4] Show that if A^{T} is strictly diagonally dominant, then for the L factor we have $\left|\ell_{i j}\right| \leq 1$.
2. (Least squares approximation to data) [pts 8] After studying a certain type of cancer, a researcher hypothesizes that in the short run the number y of malignant cells in a particular tissue grows exponentially with time t. That is, $y=\alpha_{0} e^{\alpha_{1} t}$. Determine estimates for the parameters α_{0} and α_{1} that best fit, in the sense of least squares, the researcher's observed data given in the table below.

t (days)	1	2	3	4	5
y (cells)	16	27	45	74	122

3. [pts 8] Determine the QR factors of the matrix

$$
A=\left(\begin{array}{ccc}
0 & -20 & -14 \\
3 & 27 & -4 \\
4 & 11 & -2
\end{array}\right)
$$

using the standard inner product for \mathbb{R}^{n} and the classical GramSchmidt procedure (i.e. not necessarily the modified GramSchmidt procedure).
4. (Householder transformation)
(a) [pts 5] Given any two nonzero vectors x and y in \mathbb{R}^{n}, construct a Householder matrix H such that $H x$ is a scalar multiple of y.
(b) [pts 5] Judge if the Householder matrix at the point (a) is unique or not. Motivate your answer.
5. (Polynomial of best approximation to functions) [pts 8] Among all polynomials $p_{n} \in \mathcal{P}_{n}$ of the form

$$
p_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}, \quad a_{k} \in \mathbb{R}, \quad a_{n} \neq 0
$$

find the polynomial of best approximation for the function $f(x) \equiv 0$ on the closed interval $[-1,1]$.
6. (Polynomial of least squares approximation to functions) Because of the difficulty in calculating the minimax approximation polynomial, we often go to an intermediate approximation called the least squares approximation polynomial. As notation, we introduce

$$
\|g\|_{2}=\sqrt{\int_{a}^{b}|g(x)|^{2} d x}, \quad g \in C[a, b] .
$$

and we look for a polynomial r_{n}^{*} that minimizes the expression:

$$
E_{n}(f)=\left\|f-r_{n}^{*}\right\|_{2} .
$$

(a) [pts 6] Let $f(x)=e^{x},-1 \leq x \leq 1$. Compute the polynomial $r_{1}^{*}(x)=b_{0}+b_{1} x$ which minimizes the error $\left\|f-r_{1}^{*}\right\|_{2}$.
(b) $\left[\right.$ pts 4] Estimate the final error of the approximation $\left\|f-r_{1}^{*}\right\|_{2}$.

